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5815. USA 

Received 15 February 1994 

Ahstract. We wnsmct stimulated Raman scaltering systems with damping which can be 
solved by the inverse scattering transform with a variable s p e w  parameter, and present the 
wmponding linear systems. We also analyse the non-standard properties of the damped soliton 
solution; amplitude, speed, and form change as the soliton propagates through a medium 

1. Introduction 

The soliton equations, integrable by the inverse scattering transform (IST), are conservative 
equations. Even small damping destroys the integrability. However, the IST with a variable 
spectral parameter [l], which is a generalization of the traditional IST, allows one to study 
integrable systems in the presence of special forms of damping of arbitrary strength. We 
find that there are special forms of damping which allow an integrable system to remain 
integrable. We call these special forms of damping ‘integrable damping’. They can be 
regularly found by the LST with a variable spectral parameter. What we do here is to apply the 
method of the variable spectral parameter to the general stimulated Raman scattering (sRS) 
and two-photon propagation (TPP) equations [2]. We find that there are several interesting 
forms of integrable damping which allow the resulting equations to remain integrable. 

Let us first review the basic undamped SRS/TPP equations. They are [Z] 

where E = +1 is used for SRS, and E = -1 for TPP. The system is written in characteristic 
coordinates t and x .  t is the retarted time 

t = t - x / u  

where x = x is the spatial coordinate, U is a group velocity of electromagnetic waves and g is 
a dynamical Stark shift coefficient. The Stokes vector s = (Res, Ims,sj) characterizes the 
pump and Stokes electromagnetic waves propagating through an optical media, represented 
by the Bloch vector T = (Re r, Im r, r3), s3 = lp - Is is the difference between the intensities 
of pump- and Stokes-beams; r3 is the inversion corresponding to the forbidden transition 
between ground and upper levels. Equations (I) can be integrated by inverse scattering 
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transform (ET) with a constant spectral parameter. The corresponding Lax pair for ( I )  is 
the following 13-51: 

(2) 
(26) 
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Q, + IJQ = 0 

ox + V@ = 0 

U = Auj + uo (3) 
. 

-icr3/2 (if - +g)cr 
( i f+  +g)i i~ r3 /2  

Is3 -s 
U ,  = ( ii ) U, = -- 

uO=- i f (ES  o s  o )  
-is? 

where the bars refer to complex conjugation. Here f Z  = ( E  - g2)/4 and A is a constant 
spectral parameter. 

The main goal of this work is to construct new integrable SRS models that include 
damping. Of these forms of integrable damping which we have found, two interesting ones 
are 

a,r = i(grs3 + 3s) - Zr 

8,s = i(gsr3 + s3r) 

a,r = i(grs3 + r3s) 

a,s = i(gsr3 + s3r) - QS 

E = l  g 2 = 1  (6) 
which means that f = 0. In other words, (4) and (5) are only integrable for the SRS case and 
only when the Stark coefficient has a special value. This is not surprising and frequently 
occurs in other systems when one demands integrability. 

Let us now make some remarks on the van‘able spectral parameter method [ 11. Equations 
(2) and (3) are actually an overdetermined set of linear equations with a spectral parameter. 
The condition necessary for a solution to exist (integrability condition) is (1). provided h 
is a constant. However, there is no reason for h to be a constant except for simplicity. 
It was proposed in [l] to consider h as a function of time, coordinate and an additional 
complex constant, called the ‘hidden’ spectral parameter, The proposed method was coined 
as the IST with a variable spectral parameter. For each soliton equation, integrable by the 
traditional IST, one can generate the whole class of new equations, integrable by IST with 
a variable spectral parameter. The elements of this class are called ‘deformations’ of the 
original soliton system. So, systems (4) and (5) are ‘deformations’ of the SRS system (I). 
To construct special solutions, e.g. solitons, for ‘deformations’ one can use, among other 
things, the ‘dressing’ technique that was developed originally for constant h [6]. The new 
solitons behave in new and interesting fashions. All of the soliton’s characteristics such as 
amplitude, speed, and form change as the soliton propagates through a media. 

The method proposed in [l] is a development of ideas of [E-lo]. A series of 
‘deformations’ was also obtained in [ 11-14]; a symmetry approach was designed in [ 151. 
The method to produce the finitegap solutions was developed in [7]. 

The outline of this paper is as follows: in section 2, we analyse the most general 
deformation of the SRS system (I). Here we find that the general case naturally splits 
into several subclasses. We then analyse all these subclasses. They are each a special 

a,r3 = ii(r5 - i s )  - ~ r 3  

axs3 = +i(s? - i r )  
a,r3 = i i ( r i  - FS)  

aXs3 = ii(s? -Er) - as3 

(4) 

( 5 )  

where E. a = real constants. We remark that (4) and (5) can only be obtained when 
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deformation of the general case. We also present the integrable equations (with integrable 
damping) for each subclass. 

We discuss and describe how a known [18] integrable case of SRS with conductivity 
fits into our scheme. This case is an example of a ‘trivial’ deformation. We show that it is 
nothing more than a special transformation of independent and dependent variables. Thus 
the point here is that sometimes the variable spectral method does not generate a genuinely 
new system, but rather simply generates a transformation of an integrable system. 

However, this does not always happen. As an example, the most interesting of these 
subclasses is (4), as it corresponds to the case where the atomic equilibrium for the atoms is 
fifty percent excited. Such a situation could be achieved by suitable pumping. Then if the 
two relaxation times (T, G) were equal, equation (4) would be the appropriate equation. 
Thus the soliton solutions of this equation would be of interest. But we find that they are 
also quite interesting in their own right, since they are uniquely different from other solitons 
in several ways. We also show that this is a non-trivial deformation in that there can be no 
transformation of independent and dependent variables which will reduce this system to an 
integrable undamped system. 

2. Inverse scattering transform with a variable spectral parameter 

2.1. General deformation of SRS (TPP) system 

Now we shall use a variable spectral parameter to deform the system (1). To do so. we 
only need to make one modification in a traditional IST. A is a function of t, x and some 
‘hidden’ spectral parameter z .  The dependence on z is important as it allows the functions A 
and l / ( A  + 4g) to be linear-independent. As we shall see later, the function A = A(r, x .  z )  
is not fully arbitrary 

If equation (2) is to be integrable, then it follows that 

Evaluation of (7), when A is a constant parameter, generates an expression with terms 
proportional to A , ]  and ( A  + ig)-’ .  If A is variable, then the derivatives of A should not 
generate additional functions of A ,  so we must take 

a A  C - = a h +  b + - ax A +  ;g 

where a ,  b, c, 5 ,  b and E are arbitrary coefficients to be determined This gives us a closed 
system for the function A = A(r, x ,  2 ) .  Now using (8) in (7) gives three matrix nonlinear 
equations 

( 9 4  
a,ul + [ u o . u I ~ = - ~ ~ ~ + ~ ~ u I  (9b) 

(94 

1 a,ul + [u0 - 5gul, U , ]  = -?vl + C U ~  

axuo - aiuo - [Uo, u0i - [U,, u l ]  = -bul + 6ul . 
Rewriting (9a) by component gives equations for r and r3 
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Doing the same with (9b) gives 
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'a,. = iksr3 + w r )  - a s  + fz(if - $ g ) t r  

axs3 = $i(sF - s r )  - as3 + $ei ir3.  
The system (9a') and (9b') represents a general class of deformations of SRS (TPP) system. 
If 2. is constant, then the third matrix equation (9c) generates no additional equations for 
r, r3, s and s3 provided (9a) and (96) are me .  When A is not a constant, then (9c) generates, 
in general, additional equations and causes the nonlinear system to be overdetermined. To 
avoid the overdeterminacy and to avoid constraining the r and s fields, one may assume 
additional constraints on coefficients a, b ,  c,  6.6 and E which have so far been arbitrary. 
From (9c), one finds that the first set of these constraints must be 

b = -2gc 8 = -2cgi. (10) 
For the other constraints contained in (9c), there are two possibilities. If it happens that 
f = 0, then (9c) automatically holds true, provided (9a) and (9b) are satisfied. Then in 
this case there would be no further constraints other than (10) (f = 0 only if E = + I  (SRS) 
and gz = 1). But if f # 0, then there will be a further set of constraints. These are 

i ifa 
€(if + $g) - $8 

C =  c = ki. 4 

Now there is only one other thing to consider. At this point we have equations (2) 
integrable, provided (8) is also integrable. As noted above, there are two cases. First., when 
(i) f = 0 and (10) must hold and second, when (ii) f # 0 and (10) and.(ll) must hold, 
So, we still must insure that (8) is also integrable, subject to the algebraic constraints for 
these two subcases. We shall consider these integrability conditions for (8) for each of the 
above subcases below. 

2.2. Specgc equations 

It is convenient to summarize all following results on specific deformations of the SRS (TPP) 
system in a graphical tree form: 

SRS TPP 

g # O  g = o  g # O  g = o  
(12-14) (15-17) (18-20.4-5) (12-14) (15-17) 
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We will take up each one of these branches individually. First, for the left branch of 
either the SRS or TPP tree we always have f # 0 with both (10) and (11) being necessary. 
Then integrability of (8) along with (IO) and (11) gives two possible solutions depending 
on whether or not g = 0. If g # 0, then the integrability of (8) only requires 

aii=O (12) 

a,r = i(grs3 + r3s) - 8c(if + fg)s 
a 3 - - L,( 2i  r s  - - 7s) + 4cs3 

axs = i(gsr3 + cs3r) -as 
a,s3 = ii(s7 - i r )  - as3 

a,r = i(grs3 + r3s) - +?i 

so that either a or ii must be zero. The corresponding nonlinear systems are, for 2 = 0 

(13) 

and for a = 0 

2 . .  arr3 = T(rs - rs) - $ciir3 
1 

axs = i(gsr3 + 6s3r) + @(if - 4g)r 
aXs3 = fi(s? - I r )  + iciir3. 

Here a and ii may be not only constants, but also any functions of x and 5 ,  respectively. 
Note that (13) and (14) involve a sort of ‘cross-damping’ where s(s3) drives r(r3) in (13). 
The same is true in (14) except that r and s are interchanged. 

If g = 0, then the integrability of (8) requires 

aT i- ~aii/2 = 0 2, + %a = 0. (15) 
Of course, this would be the same as (12) if we took a and 2 to be constant. However, 
(15) allows a more general class of solutions. Applying the substitution 

a = $€(In G), 

Grx = o .  (16) 

ii = 2(ln G ) ~  

reduces (15) to a wave equation for G. 

The related nonlinear system is now 

axs = icsgr -as  + $c%r 
aXs3 = 4i(s? - i r )  - as3 + &iir3. 

and the branch for E]/’ is arbitrary. 
Note that we now have a more general type of ‘cross-damping’ whereby both r(r3) and 

s(s3) drives the other one. Thus we have a more general linear coupling between the fields. 
Now, all that is left is the right branch of SRS tree. In this case, when f = 0 , (6) and 

(IO) are true, we obtain a more general nonlinear system for the coefficients 

6, +2aii = O  
cr + 2fc = 0 

cX +a;+ iaii + 3iic = 0 
a, +Ea + 8cZ+ 3% = 0 .  
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At the moment, there is no general solution of (18), and it is not clear if there are interesting 
cases with this general structure. However, there are interesting subcases contained in the 
seemingly trivial solution 

S P Burtsev and D J Kaup 

c i = o = c  (19) 

E x + a E = O  a,+Ea=O. (20) 
which reduces (18) to 

If one takes E = (InG),, a = (InG),, then (20) is transformed into (16). 
Particular simple examples follow from (20) upon taking a = 0 and E # 0 in which 

case, the general system (9) reduces to (4) which is SRS system with a damping that affects 
only the optical media. If we choose a # 0 and E = 0, then (9) reduces to ( 5 ) .  In this 
case, the electromagnetic wave is damped by conductivity. We remark that the special 
deformations (13) and (14) (f # 0, g # 0) of SRS (TPP) were first constructed in [14]. 

2.3. The SRS equation with conductivity 

There is a very interesting case of integrable damping for the SRS equations which was 
obtained in [IS] (see (22a) below). This integrable damping is simply an ordinary 
conductivity which at first does not seem to fit into our scheme. However, with the proper 
asymptotics, we can show that 1181 does fit into OUT scheme. 

First, assume that g = 0 and consider the very special case of the general deformation 
of SRS (90') and (9b'): E = 0 = 6 = E; 4c = a = constant. Second, let us scale every 
dependent and independent variable in the deformation as follows: 

X = & / E  S = E s  S 3 = E %  

s = r  r = E L  r3 = - I  +o(E*) (21) 
a = ~g 

and then take the limit: E + 0. The bar under the variable denotes a new variable and 
should not be confused with the bar over the variable, which means complex conjugation. 
The physical meaning of this is that almost all atoms in the optical media are initially in the 
ground state, while low-amplitude, long-wave optical pulses are propagating through the 
media. Although the original system (9a') and (9b') does not seem to really apply to optics, 
because of the 'cross-damping' terms, nevertheless, the limiting procedure (21) leads to the 
following physically meaningful system, the SRS system with an ordinary conductivity g 

aLr = -is ( 2 k )  
a,. = i 2 .  - 

a,% = + i & ,  E -  i .  I, - 
- 

3. 
The Lax pair for (22a) can be obtained from the same limit applied to (2) and (3). This 
gives 

- 
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and & = h . E .  (The authors of [ 181 derived the Lax pair for (22) in a different way by using 
equivalence between system (22a) and the Maxwell-Bloch system 121.) 

An important point is that system (22a), like its counterpart, the Maxwell-Bloch system 
with damping [I], is in a way a trivial deformation. What happens is that there is a certain 
transformation of dependent and independent variables which will reduce these systems 
with integrable damping to a system with no damping. To see this, let 

Thii transformation has an image transformation on the Lax pair. It is possible, in part, 
because the spectral parameter &, 

(25) 

corresponding to the system (22a), has a very simple structure: the z-dependence is 
separated from X-dependence. To construct the image transformation of (23) on the 
corresponding Lax pair (22b) and (22c), one proceeds as follows. First, one substitutes 
(25) into the linear system (22b) and (22c) and multiplies the result by &. Then, it 
becomes clear that one can make a transformation of the spatial coordinate x , 

h = & ( z , ~ ) = z e  -0 .x  -- - 

- 

and that one can redefine the s, s3. r, and r3 fields according to (23). Finally, one obtains the 
Lax pair for the undamped sysgm (24) &ch contains z as a constant spectral parameter. 

So, one can now take any known exact solution ( R .  S, S3)(r7, c), process it with the 
transformation (23) and generate an exact solution for the damped system ( 2 2 ~ ) .  Note how 
this transformation has changed the evolution. The system with integrable damping evolves 
almost like the undamped system, except that the spatial coordinate has been distorted and 
we have to multiply fields by exp(-gx) in (23). Thus as x becomes much larger than E-', 
the intensity of the physical variables% vanishing, thereby cutting off the interaction. 

Let us note that, in general, separability of the variable spectral parameter into functions 
of z and the coordinates may be inadequate for the existance of a trivial deformation. 
Consider the SRS system given by (5). There the variable spectral is also separable. 
Nevertheless, this is not sufficient for reducing (5) to the undamped system (1). The reason 
being, the linear system (B), unlike (22b), has a pole at the point h = -4g. So, after 
substitution X(z, x )  into (2b) we would obtain the fraction l/(z+fge'x), a movable simple 
pole, unless g = 0. But for (S), g is a non-zero constant: g2 = 1. Similarly, one cannot 
construct such a transformation for the damped system (4) because the z-dependence of the 
corresponding 1 = h(z,  r) (see (27) below) cannot be separated from 5-dependence. So, 
systems (4) and (5) are non-trivial deformations of the original SRS system (1). 
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3. Soliton solution (damped and undamped) 

If one considered the most general form of SRS with realistic physical damping terms, then 
the most appropriate model would be 

S P Burtsev and D J Kaup 

a,s = i(gsr3 + s3r) -us = ii(sF - ir)  - us3 

where T is the time of relaxation for polarization. T3 is the time constant for decay of the 
inversion and U is a phenomenological conductivity. Unfortunately, even with a variable 
spectral parameter, (26) is not integrable. However, we do have two special cases of (26) 
which can be of interest. The first case corresponds to (4) when there is no conductivity, 
U = 0, and the relaxation constants T, 7'3 and ry are taken to be T = 7'3 and r," = 0. If it 
were not for r! being zero, then this would be an important physical situation. However 
ry = 0 means that the stable equilibrium would have to be 50% excited with equal 
populations in each level. That can only occur physically in an infinitely high temperature 
or if suitably pumped. The second case is when T = CO = T3 and only the conductivity, 
U ,  is present. This case is given by (5) and would model SRS in a conducting medium and 
was discussed above. 

Now let us turn our attention to (4) and look at the soliton solution. We derive the 
one-soliton formula for (4) using the 'dressing' technique [6,16], taking into account that 
A must satisfy (8). This gives 

zet' 
1 + 2gz(i - e") 

A = h(z ,  r )  = 

- 
We have also used U = 0 = b = c = Z, b = -2gC E = real constant, g = *I. Note that 
z is the 'hidden' spectral parameter which is, in fact, just an integration constant for the 
system (8). Omitting standard calculations, we present the final formulae: 

In the above, we have taken 

e = ZI = f + iq 

where 

A I  = A(z = ZL,  r )  = A , ,  + iAli. 

Note that h(r  = 0, z) = z ,  so z is also the initial value of variable spectral parameter. Also 

where 00 and qo are real constants that define the real and complex phases of the soliton, 
respectively; the dependence on retarded time r and the coordinate x is defined in the 
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If 17 goes to 0 we have the soliton vanishing, leaving us with only a 'background' solution: 

s3 = SO 

s = o  r = O .  
r3 = ro exp[-E(r + x / u ) l  

(31) 

Transforming (31) into the laboratory frame, we obtain for r3, 

r3 = roe-Et. 

Soliton formulae (27)-(30) are paramehized by four real constants: so, ro, 00, qo and by one 
complex constant: ZI. In the limit 5 4 0, the 'damped' soliton (27)-(30) degenerates 
into the known SRS soliton [3,5,171. Indeed as C? + 0, then h + z; A -+ x; 
(g/t) lnyl -+ -.?IT, and 

This is an undamped Raman soIiton as one can see upon simply substituting (32) into (28). 
Although the structure of formula (28) for the 1-soliton solution is exactly the same 

as in the absence of damping, nevertheless the damping strongly affects the way T and x 
appear in the expression (28). Without damping, Inrp/P and A ( x )  are just linear functions 
of T and x , respectively. With damping, In p / r  and A are nonlinear functions. It is they 
(together with expression (27) for h(z,  T ) )  that define how the soliton's parameters change 
as the soliton propagates through an optical media. In the 'future', f -+ +CO, expressions 
(28)-(30) simplify and describe a soliton of asymmeaic shape that moves with the group 
velocity U of electromagnetic waves in a transparent media. To obtain this result, let us 
switch to the reference system that moves with the group velocity x - ut = y and take the 
limit 1 + +CO in (28)-(30). Then 

" 
A 4 7  

C 

in (28). (29). The asymptotic shape of the soliton is asymmeaic. Figure 1 represents a plot 
of s3Cy) (full curve) as t 4 CO. The broken curve denotes the shape of the soliton [5,17] 
for SRS without any damping. In this figure, we have used the following values for the 
parameters 

s O = r o = l  g = v = l  E=O.3 q = O . 1 .  (35) 

From equation (28)-(30) one can show that the damped soliton is almost standing still (in 
the laboratory reference system) when t < 0. Then, mound f = 1 ,  the soliton picks up 
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0.6 

F i e  1. Damped soliton (full curve) to SUS equation (4) versus undamped soliton (broken 
curve). 

speed, approaching the group velocity, U, of electromagnetic waves. Such a scenario may 
be qualitively explained by the expression 

(36) 
U 

U, = rouI2.v 1 +  
Iz1 + igl2 

for the velocity U, of an undamped Raman soliton. Here the constants ro and SO are the 
background values of fields r3 and s3, respectively. Now, switch on the damping of the type 
studied in this section. The lint change that occurs in (36) would be that the background 
inversion constant, ro. would no longer be a constant and would start to grow exponentally 
as t + -CO; in other words the optical medium would become too dense for the soliton 
to propagate. So, in this limit, us + 0. For time going forward, f + +CO, the inversion 
ro would decay and therefore the soliton accelerates: us + U. Figure 2 illustrates these 
dynamics of the damped soliton in the (x, t)-plane. (To get a better result we have platted 
here the function --s3(x, t )  + 1 instead of s3(x, t ) . )  

To explain other features of figure 2, we analyse expressions (27)-(29) in the limits 
r - t i w .  I f r++co;X=Xo, then  

I + -4g 

is finite. As the result of (37a) and (28) 

Iim s3 =SO. (38) 
*-++CO 

If we return to the laboratory reference system, the result (38) means that both limits- 
(i) t + +CO; x = xo and (ii) f = to; x + -CO result in s3 going to the constant SO = 1. If 
r + -CO; x = XO. then 
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Figwe 2. The dynamics of the damped soliton. 

Because of (390) and (39b), lims3 # so. Thus, both limits (i) t + -m; x = xo and (ii) 
t = lo; x + +CO do not produce SO for $3. (70 take the latter limit, we have to take into 
account that A(x) + U/? as x + fco.) The results (39) mean that the damped soliton 
( 2 8 x 3 0 )  is not really a solitary wave at all: the magnitude s3 does not go to the same value 
of $0 on the right end of the x-axis as it does on the left end. Rather it is a combination 
of a solitary and a shock wave. For simplicity, we present the asymptotics for the special 
case = 0 only 

x++m so 

which has an inverse dependence on the damping S. The less damping ? or the more q, 
the less is the right-hand side of (40) and the more the damped soliton is like an undamped 
one. But even for small values of the damping the ‘tail’ is always present. 

In the absence of damping, the Raman soliton may be created in the following way. 
First, we have a pure (sa = 1) pump laser beam incident on an optical medium that has all 
atoms in the upper state (ro = +l). Such a state is a stable one, because there are no Stokes 
photons that would cause the atoms to decay from the upper to the ground state. Then, 
we switch on a Stokes beam for a certain time. As a consequence we destabilize the total 
configuration (pump, Stokes and medium) and atoms start to decay into the ground state, 
coherently emitting photons at the frequency of pump wave. After shutting off the Stokes 
beam and waiting for some time, there will remain a Raman soliton in the medium which 
is shown by the broken curve in figure 1. This optical pulse has all the regular properties 
of a soliton. 

To create a soliton under the presence of our integrable damping f , we would probably 
have to change the above experimental setup in only one respect: at the beginning, we 
would have to use a combination of pump and Stokes incident on the optical medium (see 

(4) 
lim [ ~ - 1 ] = - - -  2 1 

1 + 4q2 cosh2[(sso/?) tan-*(Zgq) + [2vrou/S(l+ 4v2)1 + &I 
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Fiyre 3. The soliton generating input pulse. 

figure 2). The right ratio of intensities is probably determined by both the value of damping 
E (40) and the amplitude of the future soliton, Then we increase the intensity of the Stokes 
beam for a certain time and finally turn off the Stokes beam completely. An exact profile of 
the damped SRS soliton is shown in figure 3. The plotted function S ~ ( X  = 10, t )  represents 
the normalized difference between pump- and Stokes-intensities. We obtained this function 
from expressions (28x30) and (35). For convenience, we took the left edge of the optical 
sample to be. at x = IO. 

We suspect that there must be some other recipies for creating a soliton in the presence 
of integrable damping. Maybe it is not even necessary to increase the intensity of the Stokes 
component at all, as in the previous examples. Maybe it's sufficient just to shut off the Stokes 
component. To prove (or disapprove) such a scenario, it would be necessary to analyse the 
scattering problem (2a) with A being defined by (27). This problem is very different from 
that studied before f3.51 without any damping. The reader should note that if (27) is inserted 
into (3). then the analytical structure of (2a) will be dramatically changed. Ln equation (h), 
U will have a simple pole on the real z-axis, causing O to have a branch-cut along the 
z-axis. For example, let us fix 8 = 1 and s = 0 in (2a). Then the solution of (2a) is 

If E goes to zero, then 0 + exp[-urq] which is a regular function on a real z-axis. But 
if E # 0, then O(z. r) ,  for any value of r ,  has a branch point at 

When r changes from -CO to +w the branch point sweeps out all values from --03 to 
+W. Thus, to define Jost functions correctly, one would have to make a cut along the 
real z-axis. This is in stark contrast to the undamped case where O only has an essential 
singularity at h = W. Due to this branch-cut along the real z-axis, we cannot expect to be 
able to use any criteria from the undamped case. Rather, one would have to analyse the 
eigenvalue problem (2a) for conditions necessary and/or sufficient for the bound states to 
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exist. So, with this in mind, it should not be too surprising if the solution for the damped 
case turned out to be significantly different from the undamped case. Turning our attention 
to (Zb), we see that V has the very same simple pole: h = - ig  and z = -$g for both 
the damped and undamped cases, respectively. Consequently the evolution of the scattering 
data should be exactly the same in both cases. 
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